Renal Tubular Acidosis

By Prof. Amr Sarhan Mansoura University

Renal Tubular Acidosis

- Renal tubular acidosis (RTA) is not a single disease, rather it is a biochemical state with clinical consequences that occurs during the course of many tubular disorders (inherited or acquired).
- RTA is characterized by normal anion gap metabolic acidosis, usually associated with normal or near normal glomerular filtration rate.
- In medical practice, RTA is a *tough* subject.

Tough Subject

- Diagnosis of RTA does not depend on clinical assessment, rather it depends mainly on laboratory assessment.
- Laboratory assessment is important not only for diagnosis but also for dose adjustment during treatment and patient's follow up
- Laboratory assessment in RTA is problematic Why?

Problems of Lab. Assessment

• Normal values of *urinary contents* (water, electrolytes, minerals and pH) have a wide range. In addition, these values are diet and age dependent.

Proper assessment of *urinary contents* needs:

- 24h urine collection
- Challenging tests (water deprivation test,...)
- Fractional excretion (sodium, K ...)
- Creatinine ratio (Ca/creatinine ratio,...)

Problems of Lab. Assessment

Lab assessment is not available in many places, in addition *reference values* is not standardized, it depends on many factors:
Type of sample (plasma, serum, whole blood...arterial, venous, mixed ...)
Time of sample (morning, evening,..)
Method used

Diagnosis by *molecular genetics techniques* is not usually available

Problems of Lab. Assessment

• There are multiple *units for measurement* (mg/dl, mEq/L, mmol/L, mOsm/kg/H₂O, specific gravity, osmolality, pH, serum and urine anion gap, osmolar gap, fractional excretion, creatinine ratio,....etc.) So, interpretation is not simple, it needs good experience.

Important Subject

- It is not uncommon
- Serious

Acute life threatening conditions
 PotassiumHeart
 SodiumBrain
 CalciumFits
 Metabolic acidosis

• Chronic morbidity

FTT, growth retardation ... Bone disease (osteopenia, rickets, ...) Renal diseases (nephrocalcinosis, nephrolithiasis,...)

Important Subject

- Response to treatment of isolated RTA is reasonable, provided that serum bicarbonate level is maintained within normal range
- Methods of treatment are usually available, simple and affordable

Important Subject

All pediatricians should be aware of pathophysiology of this subject, when to suspect, how to diagnose and how to manage RTA

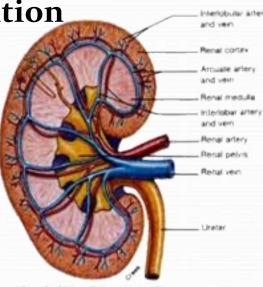
So,

Objectives

- Pathophysiology
- Pathogenesis
- When do you suspect RTA?
- Diagnostic work up
- General lines of treatment

Pathophysiology

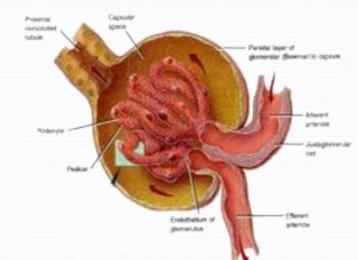
Function of Kidney


- The main function of the kidney is *urine formation*, by urine formation the kidney
 - Regulate water, electrolytes and acid base balance.
 - Excrete non-volatile waste products.
- Other functions include:
 - Erythropoietin secretion.
 - Regulation of blood pressure through renin.
 - Activation of Vit. D

How do the kidneys form urine?

- Renal blood flow
- Glomerular filtration
- Tubular function (mainly reabsorption)

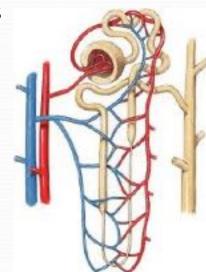
Renal Blood Flow


- Renal blood flow = 20-25% total cardiac output
- In adult, it is more than one liter /min
- About 90% of RBF supplies cortex of kidney
- RBF is subjected to restricted autoregulation
- Plasma renal flow = 700ml/min

Glomerular Filtration

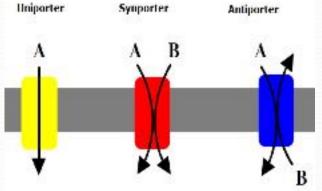
- Initial step of urine formation occurs in the glomeruli.
- Glomerular filtrate (GF) is formed by filtration across the glomerular membrane an ultrafiltrate identical to plasma minus its protein.
- Driving force is pressure gradient between both intracapillary blood pressure and Bowman's space pressure
- In adults

GFR /min = 125ml/min GFR /hour = 7.5 L/h GFR /day = 180 L/day

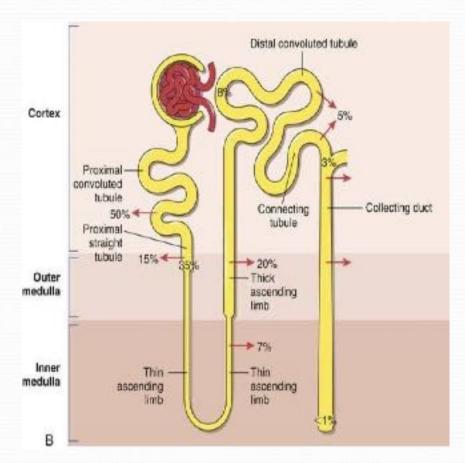


Tubular Function

• GF from the Bowman's capsule enters renal tubules, where


98 - 99% of GF is *reabsorbed* and only 1 - 2% is excreted as urine.

• The volume (water content) of urine, its pH and electrolyte contents reflect the state of the body regarding these constitutes


Tubular Function

- Reabsorption is the main function of renal tubules, although there is a limited *excretory* tubular function
- Solutes reabsorption is an active and controlled process. In certain sites, it is under hormonal control (ADH, aldosterone, ANP)
- Solutes are transported across cell membrane through: *ionic channels, pumps, transport proteins (carrier proteins)*

Tubular Structure

- Proximal tubules
- Loop of Henle
- Distal tubules
- Collecting ducts
 - Segments Connecting ducts Cortical collecting ducts Medullary collecting ducts
 - Cells
 Principal cells
 Intercalated cells

Pathogenesis of RTA

Daily [H]⁺Load

Production :

Under normal physiological condition, metabolism of standard Western diet produces a daily hydrogen ions equal to:

1-2 mEq/kg/24h adults
 2-3 mEq/kg/24h children

• Sources :

• Protein metabolism

• Incomplete metabolism of fats and carbohydrates

• Intestinal secretion of bicarbonate

Control of [H]⁺Load

- [H⁺] are buffered to maintain acid- base homeostasis by:
 Dilution with tissue fluids Intracellular and extracellular fluids
 - Buffering system:

Bicarbonate (strong base + weak acid) Non-bicarbonate (proteins, phosphates and bones)

 \circ Lung \rightarrow immediate control

Immediate effect by removal of CO2 and maintain Pco2

 \circ kidney \rightarrow remote control

Role of Kidney

• Reclaiming of all filtered HCO3 at:

• Proximal tubules (90%)

Loop of Henle and collecting ducts (10%)

• Excretion of {H+} at the collecting ducts, {H+} then combine with:

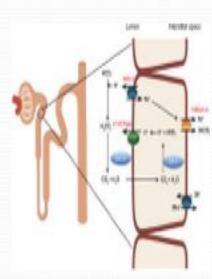
○ Remaining filtered HCO3
 ○ Urinary buffers :

 {H+} + NH3 (ammonia) → NH4 (ammonium ion)
 {H+} + HPO4 → H2PO4 (dihydrogen phosphate ion)

• Generation of HCO3

 \circ Glutamic acid \rightarrow NH3 + HCO3

Reabsorption of Filtered HCO3


• At the level of proximal tubules

•About 90% of filtered bicarbonate is absorbed in PRT.

• Other solutes (glucose, P, amino acid, low molecular weight protein) are absorbed by sodium co-transporters

It is an active and controlled process

• The driving force is NaKATPase

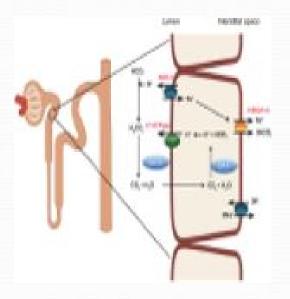
Reabsorption of Filtered HCO3

Proximal RTA (type II)

• Etiology

1-Isolated dysfunction due to

Mutation of the gene encoding Na₃HCO₃ co-transporter

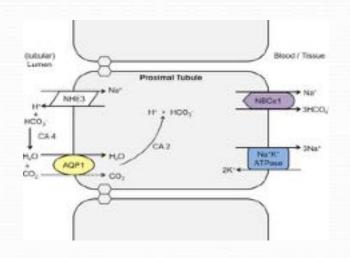

2- Global dysfunction (Fanconi syndrome) due to:

Inherited syndromes

Cystinosis, glactosemia, Wilson disease, hereditary fructose intolerance, tyrosinemia, lowe syndrome

Acquired

Drugs, heavy metals, kwashiorkor, intrinsic renal disease



Proximal RTA (type II)

Mechanism

1- Isolated

Failure of bicarb. reabsorption at PRT leads to urinary loss of bicarb. and metabolic acidosis. This occurs due to: Mutation of gene encoding Na₃HCO₃ co-transporter

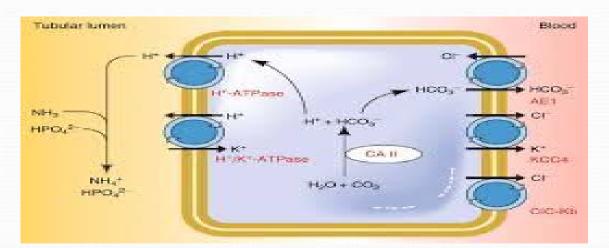
Proximal RTA (type II)

Mechanism

2-Global

Inherited or acquired Fanconi syndrome leads to cell cytopathy of proximal tubules with subsequent

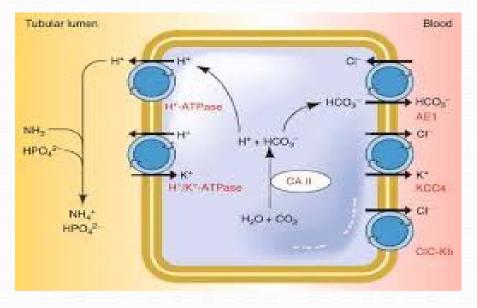
Disruption of energy production NaKATPase Diminished activity of sodium co-transporters Disruption of endocytic pathway (*Megalin/Cubilin*) Defective apoptosis


The end result is failure of bicarb. and other solutes reabsorption (glucose, amino acids, P, low molecular weight proteins ...)

Collecting Ducts

Function of intercalated cells

Excretion of {H+} with subsequent
 Reclaiming the remaining filtered bicarbonate
 Combining with urinary buffers:
 Ammonia (NH₃)
 Monohydrogen phosphate (HPO₄)
 Generation of HCO₃

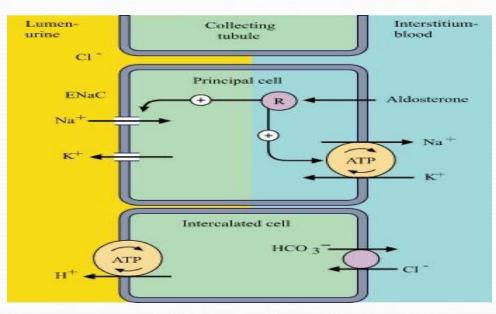

***Defects in this function leads to distal RTA**

Distal RTA (type I)

Etiology of distal RTA

1-Isolated Mutation of gene encoding {H+} ATPase (proton pump) HCO₃/Cl exchanger

2-Secondary


Intrinsic renal disease (interstitial nephritis, pyelonephritis, LN ...) Urologic (obstructive uropathy, VUR,) Drugs (Cisplatin, amphotericin B)

Collecting Ducts

Function of principal cells

Final adjustment of sodium and water reabsorption under control of aldosterone and ADH

Defect of aldosterone function leads to hyperkalemic RTA (type IV)

Hyperkalemic RTA (type IV) *Etiology 1. Primary Impaired aldosterone production Impaired renal response to aldosterone *Mutation of gene encoding aldosterone receptor* Mutation of gene encoding ENaC Interstitium-Lumen-Collecting urine blood 2. Secondary tubule CI Principal cell Urologic ENa(Aldosterone Intrinsic renal ATP Drugs Systemic diseases Intercalated cell

HCO -

CI

ATP

When do you Suspect RTA?

When do you suspect RTA?

- Polyuria and polydipsia
- Failure to thrive
- Pyrexia of unknown origin (PUO)
- Rickets ... not matched with vit. D deficiency
- History of:
 - Polyhydramnios, prematurity
 - Family history of similar condition
 - +ve consanguinity,
 - Drug intake

When do you suspect RTA?

• Dysmorphic features:

• Eye, ear, CNS, skeletal system, hair

• GIT manifestations:

• Nausea, vomiting, constipation

Nephrocalcinosis

 Recurrent attacks of dehydration with mild to moderate gastroenteritis **Diagnostic Work up**

Diagnostic Work up

Diagnostic work up of suspected cases includes:
 1-Diagnosis of RTA 2-Diagnosis of RTA subtypes 3-Etiological diagnosis 4-Complications and associated conditions

1-Diagnosis of RTA

• First step is *diagnosis of metabolic acidosis* • It is done by measuring arterial blood gases ABGs of metabolic acidosis should have: ○ *low pH* < 7.35 *◦ low HCO*₃*..... <* 20 *mmol*/*L* ○ low Pco₂ < 35 mmHq</p> • If there is appropriate respiratory compensation $Pco_2 = 1.5 x \{HCO_3\} + 8 \pm 2$

1-Diagnosis of RTA

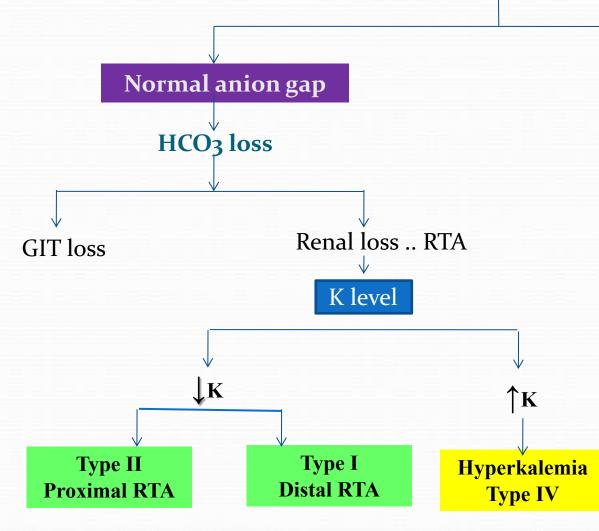
Second step is *diagnosis of normal anion gap*Anion gap equals serum (Na + K) - serum (CI + HCO3)

(140+4) – (104+25) = 15

• Upper limit of normal anion gap is < 18 : < 14

1-Diagnosis of RTA

Third step is
 Exclusion of diarrhea
 Normal or near normal GFR


Gold standard of RTA diagnosis

 Normal anion gap metabolic acidosis with normal or near normal GFR without diarrhea are the gold standard of RTA diagnosis.

2-Diagnosis of RTA Subtypes

 Diagnosis of RTA subtypes is done by measuring serum potassium level Hypokalemiatype I or type II Hyperkalemia type VI

Metabolic acidosis

Wide anion gap

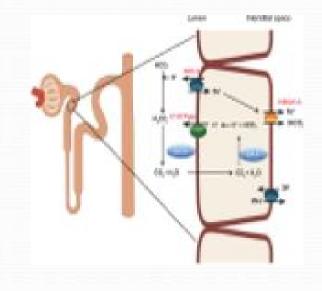
Lactic acidosis Ketoacidosis Renal failure Poisoning

2-Differentiation Between Type I & II

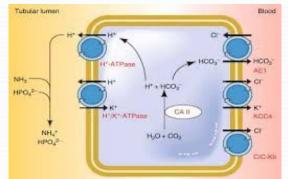
• Urine analysis

Other solutes loss *glucosuria, phosphaturia, aminoaciduria* Urine pH < 5.5 Urinary anion gap Urinary citrates

Ultra sound

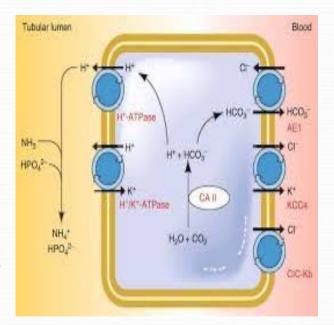

Nephrocalcinosis, renal stones ...

• X-ray bone Rachitic changes ..

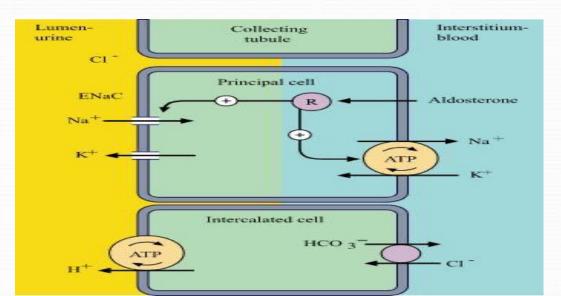

Proximal RTA (type II)

Criteria

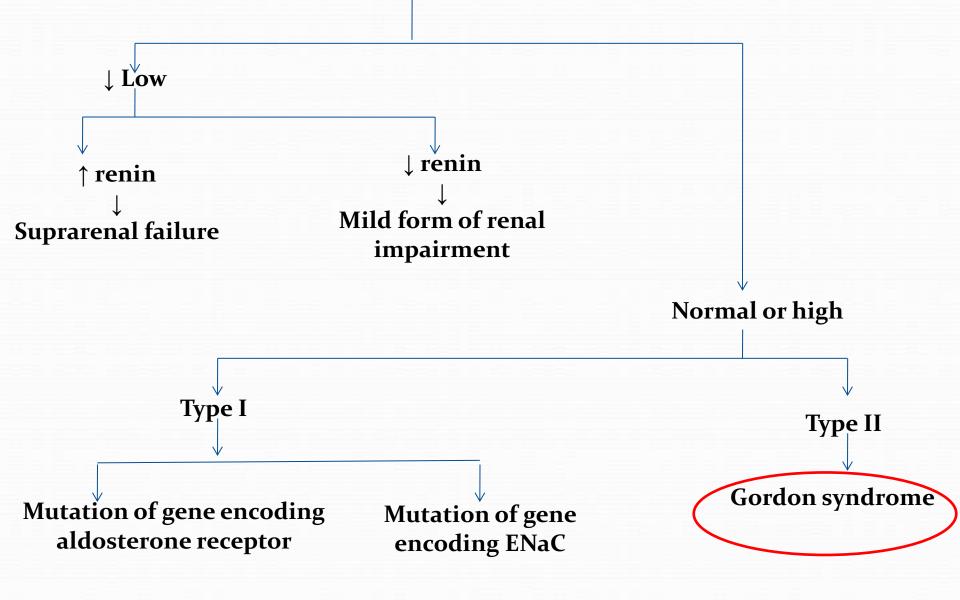
Urine pH may be < 5.5 Other tubular losses No nephrocalcinosis Normal urinary citrate Negative urinary anion gap


Urinary anion gap = (NH4) + Na + K = Cl Na + K - Cl *Na* + *K* < *Cl* -*ve* anion gap ... *NH4*

Distal RTA (Type I)


Criteria Urine pH **is never** < 5.5 No other tubular disfunction Nephrocalcinosis Low urinary citrate Positive urinary anion gap

Urinary anion gap
Na + K > Cl +ve anion gap .. no NH4



Hyperkalemic RTA (type IV)

Renal tubular acidosis with hyperkalemia occurs due to: Impaired aldosterone production Impaired renal response to aldosterone : Mutation of gene encoding aldosterone receptor Mutation of gene encoding ENaC

Aldosterone Level

3-Etiological Diagnosis

 After diagnosis of RTA and it's subtypes, the next step is to proceed to:

Etiological diagnosis Isolated vs global Primary vs secondary Inherited vs acquired

It needs further investigations (molecular genetics, enzyme assay, radiological assessment)

4-Complications and Associated Conditions

Great attention is essential to:

 Growth and development
 Bone diseases
 Dysmorphic features
 History of drug intake
 Systemic diseases
 Renal function
 Nephrocalcinosis

General Lines of Treatment

General Lines of Treatment

- Correction of primary genetic defect is not yet feasible
- Secondary forms of RTA can be treatment
- Replacement therapy
- Treatment of associated conditions

Replacement Therapy

Base therapy

• Sodium bicarbonate

Solution 8.4% each 1ml 1mmol of bicarb.

Tablets 650 mg each tab. ... 8mmol of bicarb.

• Sodium citrate

Bicitra each 1ml1mEq of bicarbonate (Na)

Polycitra ... each 1ml 2mEq of bicarbonate (Na & K)

Does :

Type I 3-4mEq/Kg/24h

Type IIup to 18mEq/Kg/24h

Replacement Therapy

Potassium therapy
 Forms

 Potassium chloride
 Potassium citrate
 Potassium phosphate
 Dose: 1-2mEq/Kg/24h

Phosphate supplement

Treatment of Associated Conditions

- In type I RTA, *Symptomatic hypercalciuria* (nephrocalsinosis, hematuria, nephrolithiasis) is treated by thiazide
- In type II RTA, *Rickets* is treated by phosphate supplement and vitamin D
- In type IV RTA, Hyperkalemia is treated by potassium- binding resins Calcium poly styrene sulfonate Sorbisteirt Sodium poly styrene sulfonate kayexalate

Conclusions

- Renal tubular acidosis is not a single disease, rather it is biochemical state with clinical consequences that occurs during the course of many tubular disorders (inherited or acquired)
- RTA is characterized by normal anion gap metabolic acidosis with normal or near normal GFR
- The pathogenesis of RTA is due to defect in renal excretion of hydrogen ions (type I), defect in reabsorption of bicarb. (type II) or both

Conclusions

- There are 4 main types: proximal RTA (type II), distal RTA (type I), hyperkalemic (type VI), and combined proximal and distal (type III)
- Diagnosis depends mainly on high level of clinical suspicion, followed by proper lab assessment and diagnostic algorithm
- General lines of treatment include mainly replacement therapy, treatment of secondary causes and associated conditions.

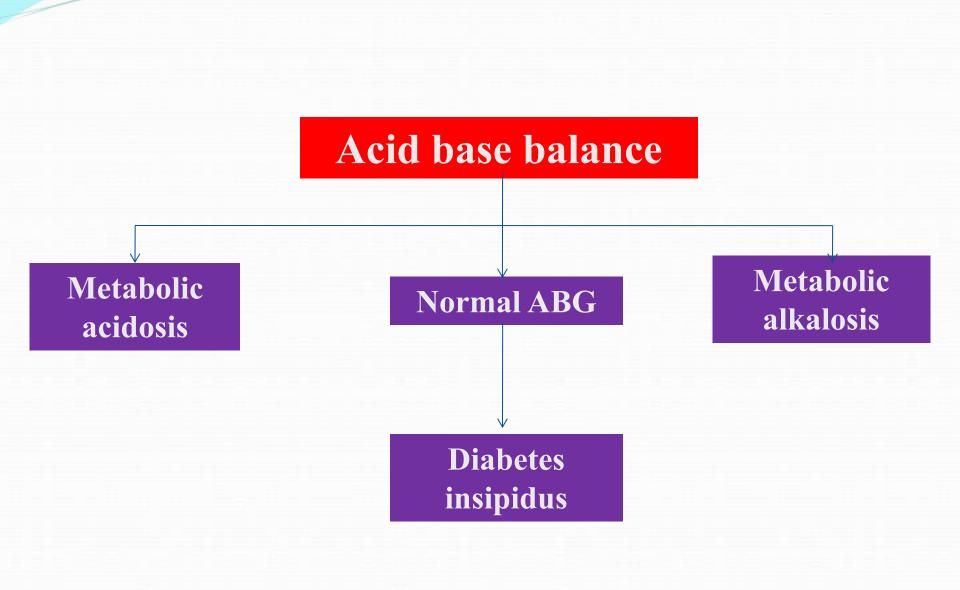
Question No 1

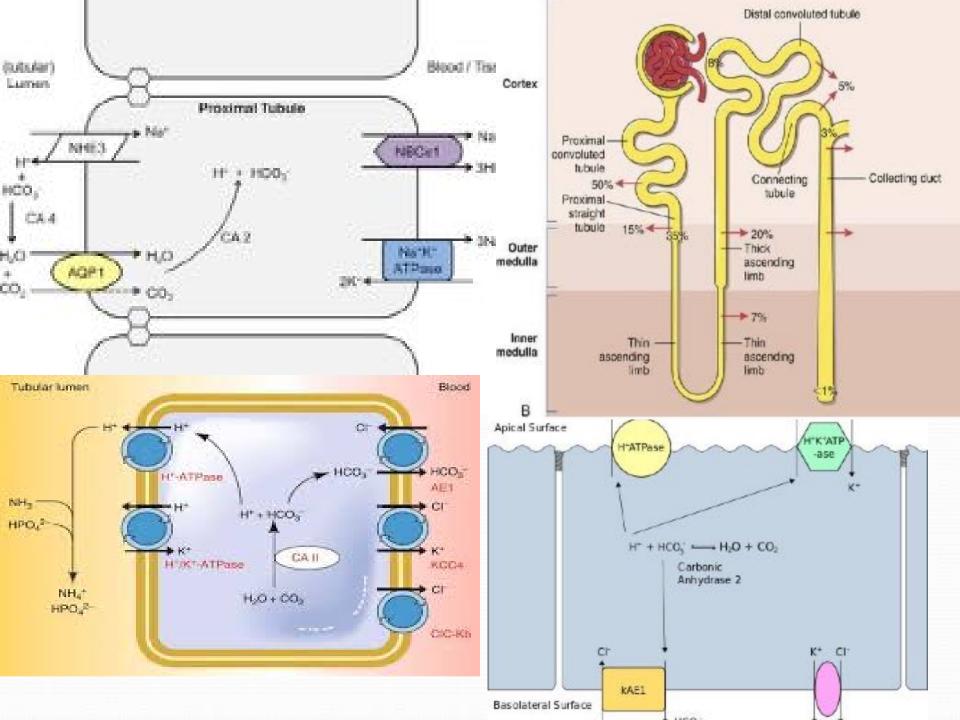
• In distal RTA, where is the site of tubular injury?

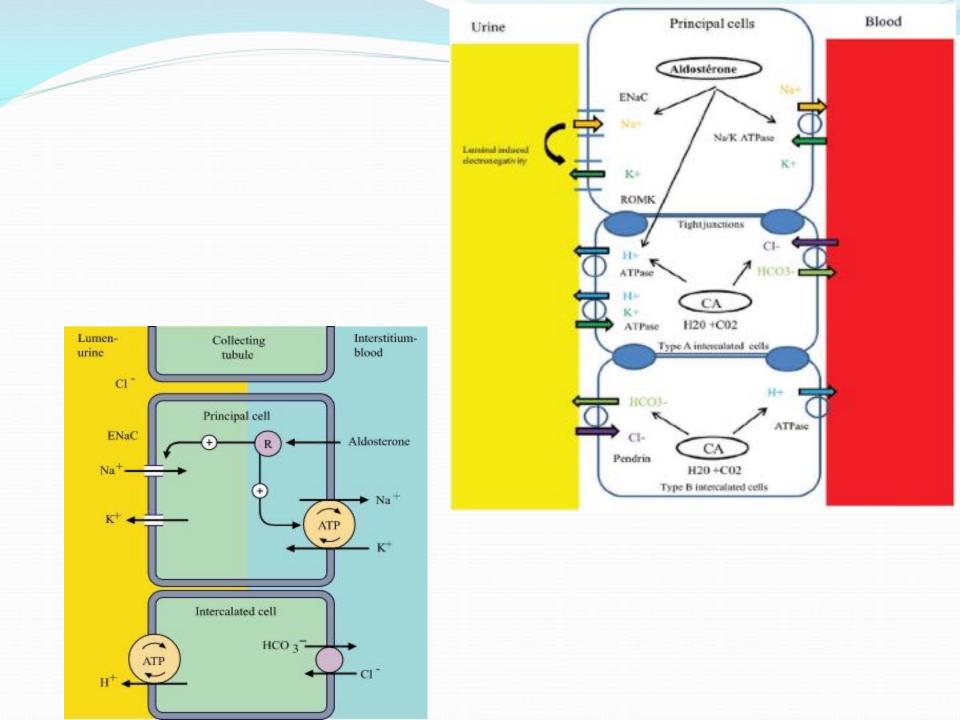
A- proximal tubulesB- loop of HenleC- distal tubulesD- collecting ducts

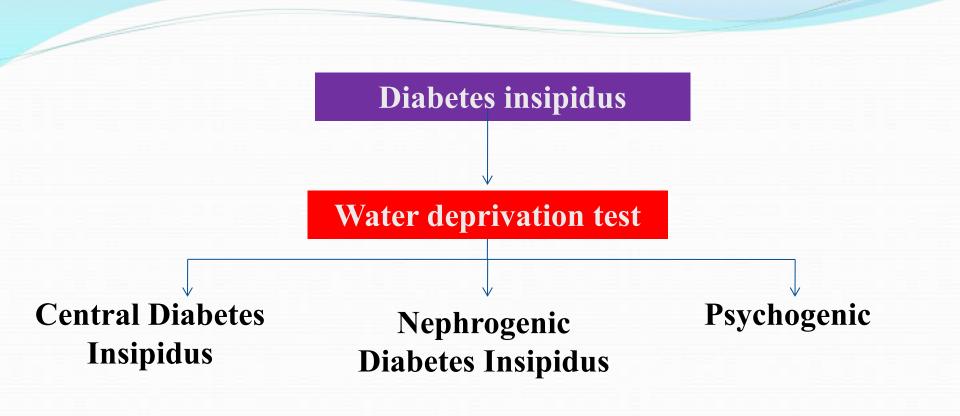
Question No 2

• Which of the following is associated with nephrocalcinosis?

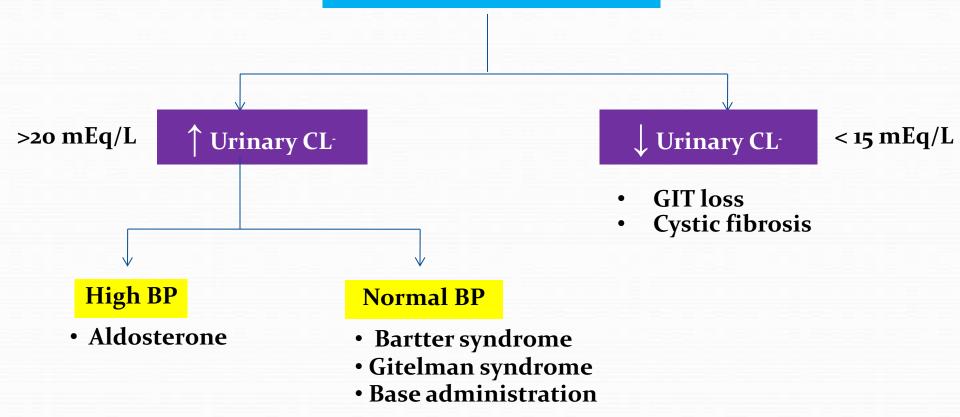

A- RTA type I B- RTA type II C- RTA type III D- RTA type IV

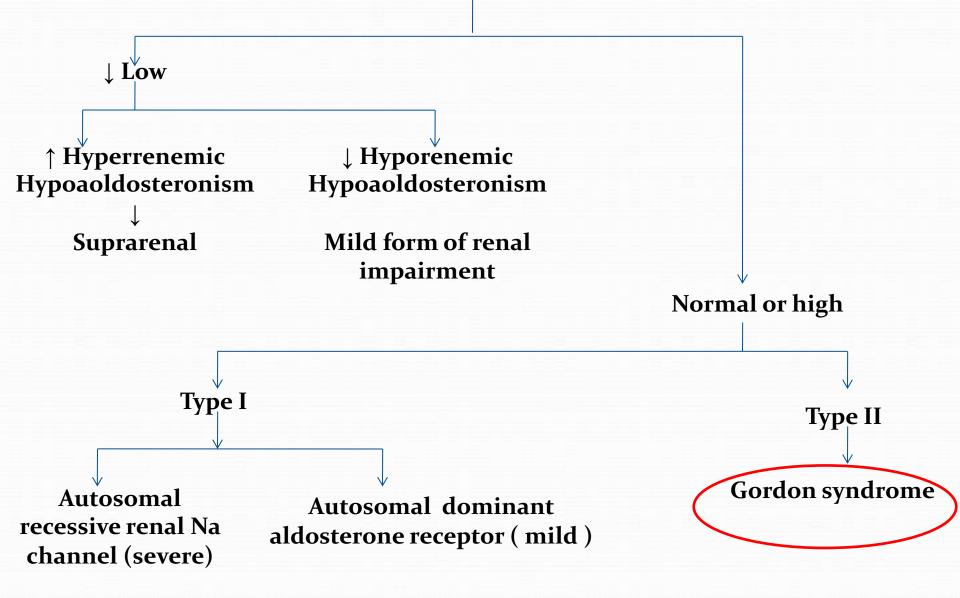

Question No 3

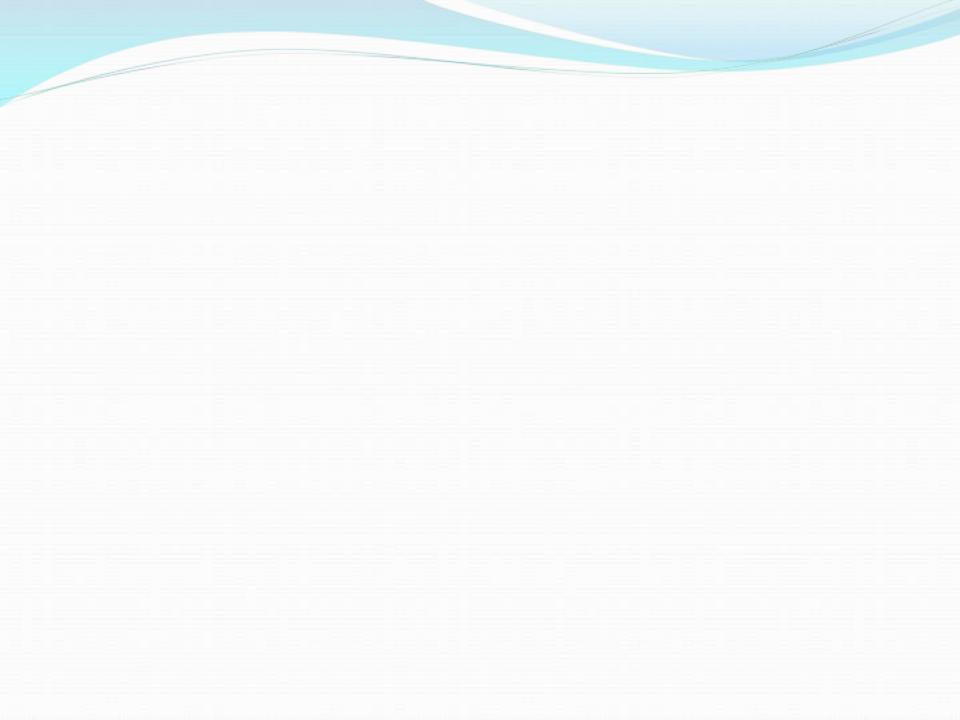

• Which of the following is associated with proximal RTA ?

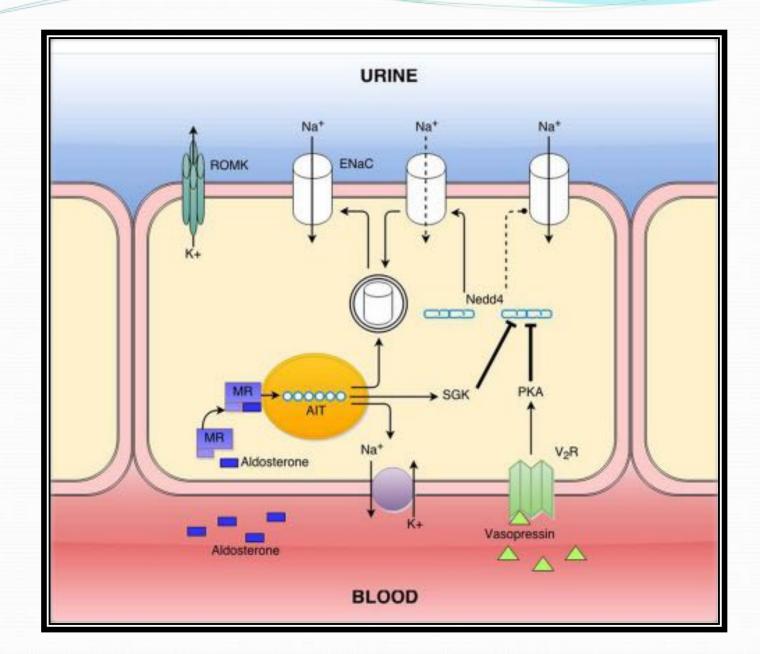

A- positive urinary anion gapB- urine pH less than 5.5C- low urinary citratesD- hyperkalemia

Thank You









Aldosterone Level

